Pompe à engrenages intérieurs débit constant

RF 10227/12.10 1/24 Remplace: 04.07

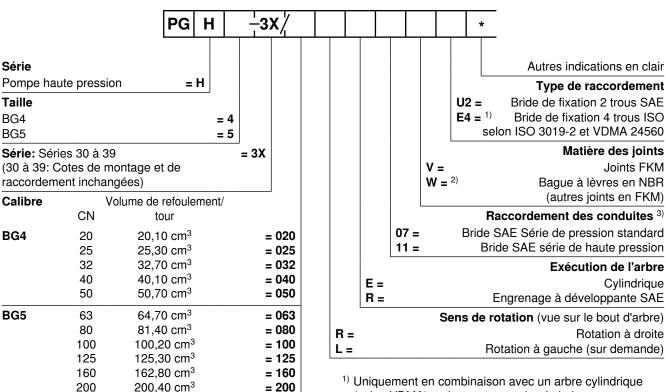
Tailles 4 et 5 Série: 3X

Pression de service maximale 350 bars

Débit maximal 250 cm³

Table des matières

Contenu Page Caractéristiques Codification Pompes simples 2 3 Fonctionnement, coupe, symbole 4 et 5 Caractéristiques techniques Sur demande Courbes caractéristiques 6 à 11 **Encombrement Pompes simples** Raccords 12 Combinaisons de pompes 13 Encombrement Combinaisons de pompes 14 à 18 Directives d'étude 19 à 22 Directives de mise en service


Caractéristiques

- Débit constant
- Peu de bruit durant le fonctionnement
- 2 Faible pulsation du débit
 - Rendement élevé même en cas de vitesse et viscosité réduite grâce aux fentes de compensation
 - Adaptée aux grandes plages de viscosité et vitesse
 - Toutes les cylindrées et dimensions nominales sont coordonnables entre elles
 - Peut être combinée avec des pompes à engrenages intérieurs, des pompes à palettes et des pompes à pistons axiaux
 - Fonctionnant au fluide HFC (joints du type "W")
 - Utilisation:

Pour les entraînements haute puissance résistants à la fatigue qui sont exposés à des pressions élevées à un nombre d'alternances très élevé, p. ex. machines pour la transformation des matières plastiques, presses automatisées, Machines de fonderie et autres applications avec mode de chargement de réservoir.

Informations relatives aux pièces de rechange disponibles: www.boschrexroth.com/spc

Codification: Pompes simples

= 250

Toutes les variantes ne peuvent être choisies suivant le code de type! Veuillez choisir votre pompe en vous servant des tableaux de sélection (pages 6 à 11) ou en prenant contact avec Bosch Rexroth.

250,50 cm³

250

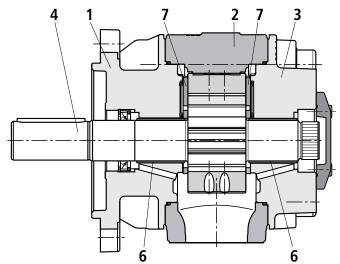
- (selon VDMA), uniquement rotation à droite
- 2) En cas de fonctionnement avec fluide HFC
- 3) Pour chacun des calibres, un type de raccordement **07** ou 11 est déterminé:

07: PGH5-3X/200/250...

11: PGH4-3X/020/025/032/040/050... PGH5-3X/063/080/100/125/160...

Toutes les prises d'aspiration sont exécutées en série de pression standard (cotes voir page 12).

Types préférentiels PGH4-3X								
Туре	Réf. article							
PGH4-3X/020RE11VU2	R901147100							
PGH4-3X/025RE11VU2	R901147101							
PGH4-3X/032RE11VU2	R901147102							
PGH4-3X/040RE11VU2	R901147103							
PGH4-3X/050RE11VU2	R901147104							


Types préférentiels PGH5-3X								
Туре	Réf. article							
PGH5-3X/063RE11VU2	R901147115							
PGH5-3X/080RE11VU2	R901147116							
PGH5-3X/100RE11VU2	R901147117							
PGH5-3X/125RE11VU2	R901147118							
PGH5-3X/160RE11VU2	R901147119							
PGH5-3X/200RE07VU2	R901147120							
PGH5-3X/250RE07VU2	R901147121							

Fonctionnement, coupe, symbole

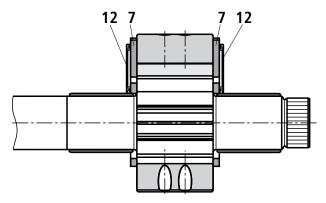
Structure

Les pompes hydrauliques de type PGH sont des pompes à engrenages intérieurs avec débit constant.

Elles se composent essentiellement d'une bride de fixation

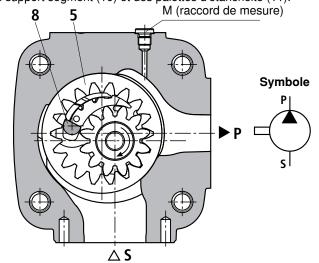
Processus d'aspiration et de refoulement

L'arbre de pignon (4) à logement hydrodynamique entraîne la roue à denture intérieure (5) dans le sens de rotation indiqué.


Les interstices entre les dents qui s'ouvrent dans la zone d'aspiration aspirent le fluide. Le transport du fluide a lieu dans les interstices entre les dents du pignon et de la roue à denture, le liquide étant transporté de la zone d'aspiration (S) à la zone de pression (P).

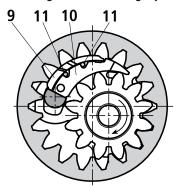
Là, le fluide est refoulé par les interstices entre les dents qui se ferment pour être acheminé à la prise de pression (P).

La séparation entre la zone d'aspiration et la zone de pression est assurée par les éléments de la compensation radiale (9 à 11) et par l'engrènement entre la roue à denture intérieure et l'arbre de pignon.


Compensation axiale

L'étanchement axial de la chambre de refoulement dans la zone de pression est assuré par des plaques (7).

Les côtés des plaques qui ne sont pas en contact avec la chambre de refoulement, sont munis d'un champ de pression (12). Ces champs balancent les plaques par rapport à la chambre de refoulement et assurent ainsi un étanchement optimal à une perte mécanique minimale.


(1), d'un boîtier (2), d'un couvercle avec convoyage (3), d'un arbre de pignon (4), d'une roue à denture intérieure (5), de paliers lisses (6), de plaques(7) et d'un goujon d'arrêt (8), ainsi que de la compensation radiale composée du segment (9), du support segment (10) et des palettes d'étanchéité (11).

Compensation radiale

Les éléments de la compensation radiale sont composés de segment (9), support de segment (10) et palettes étanchéité (11).

Le segment (9) et le support de segment (10) sont positionnés dans le champ de pression de sorte que la force de pression résultante agit surtout sur le goujon d'arrêt.

Une petite composante de la force de pression serre le segment et le support de segment contre les sommets des dents de l'arbre de pignon et de la roue à denture intérieure et assure ainsi un étanchement à réglage automatique du jeu entre la zone de pression et la zone d'aspiration.

Cela est la condition préalable à un rendement volumétrique stable pendant toute la durée d'exploitation.

Le réglage du jeu du segment et du support de segment est assuré par les palettes d'étanchéité qui sont situées entre ces deux éléments.

Logement hydrodynamique et hydrostatique

L'arbre de pignon (4) est logé dans des paliers lisses radiaux à lubrification hydrodynamique (6).

La roue à denture intérieure (5) est logée hydrostatiquement dans le boîtier.

Denture

L'engrenage à flancs en développante a une grande longueur d'engrènement pour assurer une pulsation faible de l'écoulement et de la pression et garantit ainsi un fonctionnement à faible bruit.

Caractéristiques techniques (en cas d'utilisation en dehors des valeurs indiquées, veuillez nous consulter!)

générales

Modèle	Pompe à engrenages intérieurs, à fentes de compensation
Type de raccordement	Bride SAE à 2 trous selon ISO 3019-1 ou Bride SAE à 4 trous selon VDMA 24560 et ISO 3019-2
Raccordement des conduites	Raccord à bride
Charge sur l'arbre	Puissances radiales et axiales (par ex. poulie à courroie) uniquement sur demande
Sens de rotation (vue sur le bout d'arbre)	Rotation à droite ou à gauche (sur demande) - mais non en alternance!

hydrauliques

•								
Fluide hydraulique			HLP – huile minérale selon DIN 51524 Partie 2 HFC – solution polymère aqueuse selon DIN EN ISO 12922 1) 2): Joints du type W HEES – fluides selon DIN ISO 15380 1) HFD-U – fluides selon VDMA 24317 1), DIN EN ISO 12922 1) Veuillez respecter nos prescriptions selon la notice RF 90220 Autres fluides sur demande!					
Plage de température	Fluide HLP	°C	-10 à +80; demandez en cas de températures différentes!					
du fluide hydraulique	Fluide spécial	°C	-10 à +50; demandez en cas de températures différentes!					
Plage de température	ambiante	°C	−20 à +60					
Plage de viscosité		mm²/s	10 à 300 (jusqu'à n = 1800 min ⁻¹) 10 à 100 (jusqu'à n = 3000 min ⁻¹) 2000 viscosité de démarrage admissible (400 à 1800 min ⁻¹)					
Degré de pollution ma fluide hydraulique India lon ISO 4406 (c)			Classe 20/18/15 ³⁾					

1) Attention!

Les restrictions pour les fluides spéciaux s'appliquent à ces fluides

- ²⁾ Fluide hydraulique HFC: Vitesse d'entraînement n_{max} = 2000 min⁻¹
- ³⁾ Les indices de pureté mentionnés pour les composants sont à respecter dans les systèmes hydrauliques. Un filtrage efficace évite les dérangements tout en augmentant la longévité des composants. Pour le choix des filtres, voir notices RF 50070, RF 50076, RF 50081, RF 50086 et RF 50088.

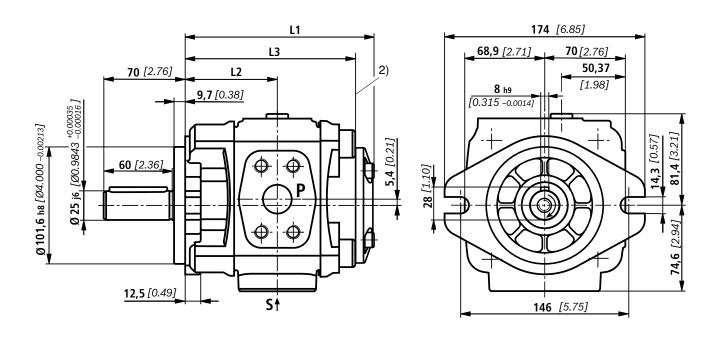
Caractéristiques techniques (en cas d'utilisation en dehors des valeurs indiquées, veuillez nous consulter!)

Taille	BG					PGH4			
Calibre	CN		20		25	32	40)	50
Poids	m	kg	14	1	4,5	15	16	5	17
Plage de vitesse 1)	n_{\min}	min ⁻¹	200	2	200	200	200	0	200
	n_{max}	min ⁻¹	3000	3	000	3000	300	0	3000
Volume de refoulement	V	cm ³	20,1	2	5,3	32,7	40,	1	50,7
Débit ²⁾	q_{\vee}	l/min	28,9	3	6,3	46,9	57,6		72,8
Moment d'inertie de masse (sur l'axe d'entraînement)	J	kgm²	0,00037	7 0,0	0045	0,00055	0,000	066	0,00081
Puissance absorbée	$P_{ferm\'e}$	kW							
Puissance d'entraînement (pour p \approx 1 bar)				-	1,1	1,1	1,1	ı	1,5
Puissance d'entraînement r	nax. ad	missible	35		44	56	61		76
Pression de service, absolue – Entrée	bars		0,8 à 2 (0,6	6 bars briève	ement au m	oment du d	émarrage)	
Pression nominale	$\frac{p}{p_{N}}$	bars	bars						
- Sortie en permanence	Fluide	HLP	315 25						250
	Fluide	sp. ³⁾			220				175
intermittent ⁴⁾	p _{max} Fluide	bars			350				315
	Fluide				245				210
	Tiulue	3ρ. ⁻	1		243				
Taille	BG					PGH5			
Calibre	CN		63	80	100	125	160	200	250
Poids	m	kg	42	43,5	45,5	48	52	55,5	60,5
Plage de vitesse 1)	n_{\min}	min ⁻¹	200	200	200	200	200	200	200
	n_{max}	min ⁻¹	3000	3000	3000	3000	3000	3000	3000
Volume de refoulement	n _{max}	min ⁻¹ cm ³	3000 64,7	3000 81,4	3000 100,2	3000 125,3	3000 162,8	3000 200,4	3000 250,5
Volume de refoulement Débit ²⁾									
	V	cm ³	64,7	81,4	100,2	125,3	162,8	200,4	250,5 359,6
Débit ²⁾ Moment d'inertie de masse	V	cm ³ I/min kgm ²	64,7 92,8	81,4 116,9	100,2 143,8	125,3 179,8	162,8 233,7	200,4	250,5 359,6
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement)	V $q_{ m V}$ J $P_{ m ferm\'e}$	cm ³ I/min kgm ² kW	64,7 92,8	81,4 116,9	100,2 143,8	125,3 179,8	162,8 233,7	200,4	250,5 359,6
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement	V $q_{ m V}$ J $P_{ m ferm\'e}$ min. red	cm ³ I/min kgm ² kW quise	64,7 92,8 0,00237	81,4 116,9 0,00289	100,2 143,8 0,00329	125,3 179,8 0,00407	162,8 233,7 0,00506	200,4 287,7 0,00623	250,5 359,6 0,00760
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r	$\frac{V}{q_{\rm V}}$ $\frac{J}{J}$ $P_{\rm ferm\'e}$ min. rec	cm³ I/min kgm² kW quise	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103	100,2 143,8 0,00329 3 129	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5	200,4 287,7 0,00623 7,5	250,5 359,6 0,00760 7,5
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r	V q_V J $P_{\rm ferm\'e}$ min. rec max. add	cm³ I/min kgm² kW quise missible bars	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103	100,2 143,8 0,00329	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5	200,4 287,7 0,00623 7,5	250,5 359,6 0,00760 7,5
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r Pression de service, absolue – Entrée	$\frac{V}{q_{\rm V}}$ $\frac{J}{J}$ $P_{\rm ferm\'e}$ min. rec	cm³ I/min kgm² kW quise missible bars bars	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103 0,8 à 2 (0,6	100,2 143,8 0,00329 3 129	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5	200,4 287,7 0,00623 7,5	250,5 359,6 0,00760 7,5
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r Pression de service, absolue Entrée Pression nominale	V q _V J P _{fermé} min. red max. add	cm³ I/min kgm² kW quise missible bars bars	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103 0,8 à 2 (0,6	100,2 143,8 0,00329 3 129	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5 134 oment du d	200,4 287,7 0,00623 7,5 140 émarrage	250,5 359,6 0,00760 7,5 134
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r Pression de service, absolue Entrée Pression nominale	V q_V J $P_{\text{fermé}}$ min. rec max. add p p P_N Fluide Fluide	cm³ I/min kgm² kW quise missible bars bars	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103 0,8 à 2 (0,6	100,2 143,8 0,00329 3 129 6 bars briève	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5 134 oment du d	200,4 287,7 0,00623 7,5 140 émarrage	250,5 359,6 0,00760 7,5 134
Débit ²⁾ Moment d'inertie de masse (sur l'axe d'entraînement) Puissance absorbée Puissance d'entraînement (pour p ≈ 1 bar) Puissance d'entraînement r Pression de service, absolue - Entrée Pression nominale - Sortie en permanence	V q _V J P _{fermé} min. red max. add	cm³ I/min kgm² kW quise missible bars bars HLP sp. 3) bars	64,7 92,8 0,00237	81,4 116,9 0,00289 2,2 103 0,8 à 2 (0,6	100,2 143,8 0,00329 3 129 6 bars briève	125,3 179,8 0,00407 4 161	162,8 233,7 0,00506 5,5 134 oment du d	200,4 287,7 0,00623 7,5 140 émarrage	250,5 359,6 0,00760 7,5 134

 $^{^{1)}}$ Fluide hydraulique HFC: Vitesse d'entraı̂nement n $_{\rm max}$ = 2000 min $^{-1}$ $^{2)}$ Mesuré à n = 1450 min $^{-1}$, p = 10 bars et = 30 mm 2 /s

³⁾ Attention!

Les restrictions pour les fluides spéciaux s'appliquent à ces fluides


⁴⁾ Max 10 s, au maximum 50 % du facteur de marche

Encombrement de la taille 4 (cotes en mm [inch])

 $\textbf{PGH4-3X/...}_{L}^{R}\textbf{E...}\textbf{VU2}$

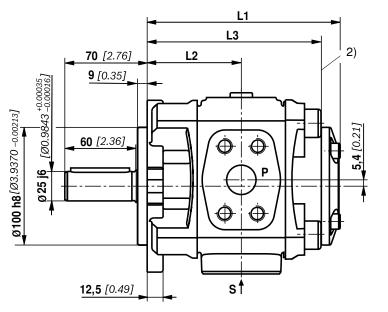
Arbre d'entraînement cylindrique, bride de fixation SAE à 2 trous

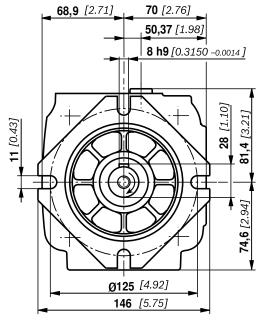
		Réf. article						
Туре	CN	"R" rotation à droite	"L" rotation à gauche	L1	L2	L3	S 1)	P 1)
DCH4 2V/0	000 E11//10	R901147100	Sur demande	145	70,5	129	1" S	3/4" H
PGП4-3A/C	3X/020E11VU2	11301147100	Sur demande	[5.71]	[2.78]	[5.08]	13	3/4 П
DCLI4 OV/0	005 5141/110	D001147101	Con demonde	150	73	134	1 1/4" 0	0/4".1.1
PGH4-3X/0	3X/025E11VU2	R901147101	Sur demande	[5.91]	[2.87]	[5.28]	1 1/4" S	3/4" H
DCIIA OV/O	200 [14]/[10	/U2 R901147102	Com domesticale	157	76,5	141	1 1/2" S	1" H
PGH4-3X/0	032E11VU2	H901147102	Sur demande	[6.18]	[3.01]	[5.55]		ΙП
DCLI4 OV/0	040 5441/110	D001147100	Con demonde	164	80	148	1 1/0" 0	4 11 11
PGH4-3X/C	040E11VU2	R901147103	Sur demande	[6.46]	[3.15]	[5.83]	1 1/2" S	1" H
	B204447404		Cur domando	174	85	158	2" S	4" []
PGH4-3X/0	050E11VU2	R901147104	Sur demande	[6.85]	[3.35]	[6.22]	25	1" H

cotes précises: Voir tableau, page 12

Une pompe tournant à droite est représentée; sur les pompes tournant à gauche, la prise de pression est située sur l'autre coté!

S = Série de pression standard;
 H = Série de haute pression;


²⁾ A partir d'ici commence la partie combinée pour les pompes multiples


Encombrement de la taille 4 (cotes en mm [inch])

PGH4-3X/... RE...VE4

Arbre d'entraînement cylindrique, bride de fixation à 4 trous selon ISO 3019-2 et VDMA 24560

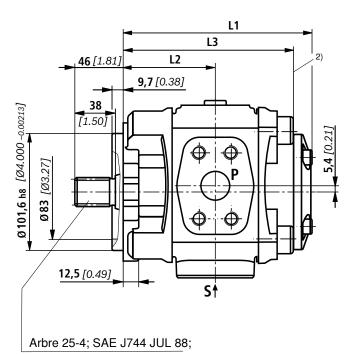
	Réf. article						
Type CN	"R" rotation à droite	L1	L2	L3	S 1)	P 1)	
DOLLA OV/OCODETATIVE	D004447405	145	70,5	129	4".0	0/4" 1	
PGH4-3X/020RE11VE4	R901147105	[5.71]	[2.78]	[5.08]	1" S	3/4" H	
DOLLA 0V/00EDE44VEA	D001147100	150	73,0	134	1 1/4" 0	3/4" H	
PGH4-3X/025RE11VE4	R901147106	[5.91]	[2.87]	[5.28]	1 1/4" S		
DOLLA OVIGOODEAAVEA	D001117107	157	76,5	141	4 4 /0" 0	1" H	
PGH4-3X/032RE11VE4	R901147107	[6.18]	[3.01]	[5.55]	1 1/2" S		
DOLLA OVIO AODELAVEA	D001117100	164	80	148	4 4 /0" 0	40.11	
PGH4-3X/040RE11VE4	R901147108	[6.46]	[3.15]	[5.83]	1 1/2" S	1" H	
DOLLA OV/OFODEAAVEA	D0044 47400	174	85	158	0".0	4"11	
PGH4-3X/050RE11VE4	R901147109	[6.85]	[3.35]	[6.22]	2" S	1" H	

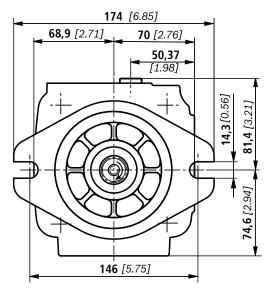
H = Série de haute pression;

cotes précises: Voir tableau, page 12

¹⁾ S = Série de pression standard;

²⁾ A partir d'ici commence la partie combinée pour les pompes multiples


Encombrement de la taille 4 (cotes en mm [inch])


 $\textbf{PGH4-3X}/... \frac{\textbf{R}}{\textbf{L}} \textbf{R}... \textbf{VU2}$

Arbre d'entraînement denté, bride de fixation SAE à 2 trous

(pompe médiane et arrière en cas de combinaisons de pompes)

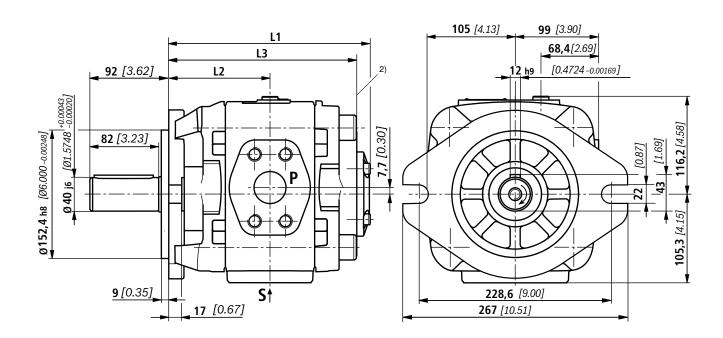
	Réf. a	article					
Type CN	"R" rotation à droite	"L" rotation à gauche	L1	L2	L3	S 1)	P 1)
PGH4-3X/020R11VU2	D001147110	Sur demande	145	70,5	129	1" S	2/4" LI
PGH4-3A/020R11VU2	R901147110		[5.71]	[2.78]	[5.08]		3/4" H
PGH4-3X/025R11VU2	J2 R901147111 Sur deman		150	73	134	1 1/4" S	3/4" H
PGH4-3A/025R11VU2	M901147111	Sur demande	[5.91]	[2.87]	[5.28]	1 1/4 5	3/4 П
DCII4 0V/000 D44VII0	D0011 17110	0 1 1 1 1 1	157	76,5	141	4.4/0".0	4"11
PGH4-3X/032R11VU2	R901147112	Sur demande	[6.18]	[3.01]	[5.55]	1 1/2" S	1" H
DCII4 0V/040 D44V/II0	D001147110	Com dome and a	164	80	148	1 1/0" 0	4"11
PGH4-3X/040R11VU2	R901147113	Sur demande	[6.46]	[3.15]	[5.83]	1 1/2" S	1" H
DCU4 2V/050 D14V/U2	D001147114	0 1	174	85	158	2" S	4" []
PGH4-3X/050R11VU2	R901147114	Sur demande	[6.85]	[3.35]	[6.22]	2 3	1" H

Engrenage à développante ANSI B92.1a-1976, 15T 16/32 DP 30°

1) S = Série de pression standard;

H = Série de haute pression; cotes précises: Voir tableau, page 12

²⁾ A partir d'ici commence la partie combinée pour les combinaisons de pompe


Une pompe tournant à droite est représentée; sur les pompes tournant à gauche, la prise de pression est située sur l'autre coté!

Encombrement de la taille 5 (cotes en mm [inch])

PGH5-3X/... R E...VU2

Arbre d'entraînement cylindrique, bride de fixation SAE à 2 trous

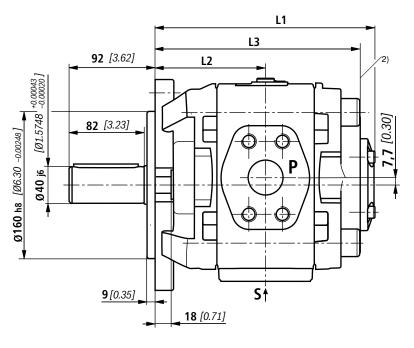
		Réf. a	article					
Туре	CN	"R" rotation à droite	"L" rotation à gauche	L1	L2	L3	S 1)	P 1)
1,00		diono	gadono	210	105,5	194		•
PGH5-3X/063E11VL		R901147115	Sur demande	[8.27]	[4.15]	[7.64]	2" S	1 1/4" H
DOLLE OV/O)00 F14)///0	D004447440	0	218	109,5	202	0".0	1 1/4" H
PGH5-3X/0)80E11VU2	R901147116	Sur demande	[8.58]	[4.31]	[7.95]	2" S	
DOLLE OV/4	00 [11]	D001147117	Com demonstrade	227	114	211	0.1/0".0	1 1/2" H
PGH5-3X/1	00E11VU2	R901147117	Sur demande	[8.94]	[4.49]	[8.31]	2 1/2" S	1 1/2 П
DOLLE OV/4	V/405 544V/10	D001147110	0	239	120	223	0.4/0".0	1 1/2" H
PGH5-3X/1	25E11VU2	R901147118	Sur demande	[9.41]	[4.72]	[8.78]	2 1/2" S	
DOLLE OV/4	CO [14]/[10	D001147110	Com de me e male	257	129	241	0".0	0".1.1
PGH5-3X/I	60E11VU2	R901147119	Sur demande	[10.12]	[5.08]	[9.49]	3" S	2" H
DOLLE OV/O)00 F07\/\	D004447400	0	275	138	259	0.4/0".0	0".0
PGH5-3X/2	200E07VU2	R901147120	Sur demande	[10.83]	[5.43]	[10.20]	3 1/2" S	2" S
DOLLE OV/O)F0 F07\/\	D004447404		299	150	283	0.4/0".0	0.4/0".0
PGH5-3X/2	250E07VU2	R901147121	Sur demande	[11.77]	[5.91]	[11.14]	3 1/2" S	2 1/2" S

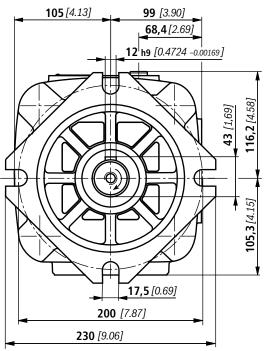
¹⁾ S = Série de pression standard;

H = Série de haute pression;

cotes précises: Voir tableau, page 12

Une pompe tournant à droite est représentée; sur les pompes tournant à gauche, la prise de pression est située sur l'autre coté!


²⁾ A partir d'ici commence la partie combinée pour les combinaisons de pompe


Encombrement de la taille 5 (cotes en mm [inch])

PGH5-3X/...RE...VE4

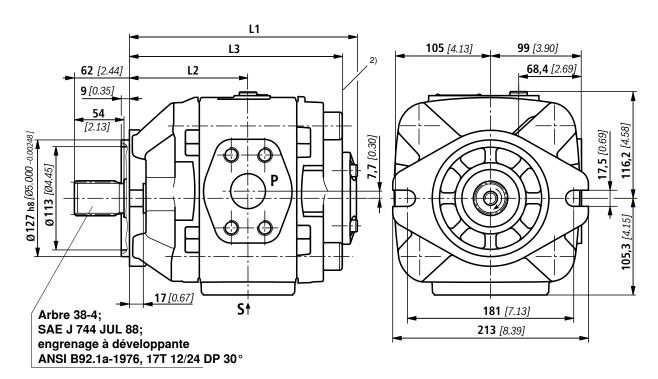
Arbre d'entraînement cylindrique, bride de fixation à 4 trous selon ISO 3019-2 et VDMA 24560

	Réf. article						
Type CN	"R" rotation à droite	L1	L2	L3	S 1)	P 1)	
PGH5-3X/063RE11VE4	R901147122	210	105,5	194	2" S	1 1/4" 📙	
PGH3-3A/003NETTVE4	N90114/122	[8,27]	[4,15]	[7,64]	23	1 1/4" H	
PGH5-3X/080RE11VE4	R901147123	218	109,5	202	2" S	4 4/4" LI	
PGH5-3A/060RE11VE4	R901147123	[8,58]	[4,31]	[7,95]	2 5	1 1/4" H	
PGH5-3X/100RE11VE4	R901147124	227	114	211	2 1/2" S	1 1/2" H	
PGH5-3A/100RE11VE4	R901147124	[8,94]	[4,49]	[8,31]	21/23	1 1/2 П	
PGH5-3X/125RE11VE4	R901147125	239	120	223	2 1/2" S	1 1/2" H	
FGH3-3A/123NE11VE4	N901147125	[9,41]	[4,72]	[8,78]	21/23	1 1/2 П	
PGH5-3X/160RE11VE4	R901147126	257	129	241	3" S	2" H	
FGH3-3A/160NE11VE4	N901147126	[10,12]	[5,08]	[9,49]	3 3		
PGH5-3X/200RE07VE4	R901147127	275	138	259	3 1/2" S	2" 5	
FGD5-3A/200RE0/VE4	n90114/12/	[10,83]	[5,43]	[10,20]	3 1/2 3	2" S	
PGH5-3X/250RE07VE4	R901147128	299	150	283	3 1/2" S	2 1/2" S	
FGI 13-37/230NE0/ VE4	N90114/126	[11,77]	[5,91]	[11,14]	3 1/2 3	21/23	

cotes précises: Voir tableau, page 12

¹⁾ S = Série de pression standard;H = Série de haute pression;

²⁾ A partir d'ici commence la partie combinée pour les combinaisons de pompe

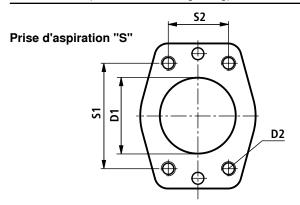

Encombrement de la taille 5 (cotes en mm [inch])

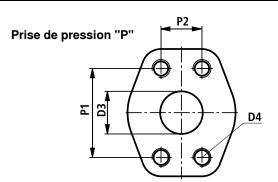
PGH5-3X/... R R...VU2

Arbre d'entraînement denté, bride de fixation SAE à 2 trous

(pompe médiane et arrière en cas de combinaisons de pompes)

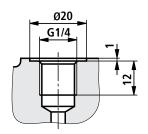
		Réf.	article					
Туре	CN	"R" rotation à droite	"L" rotation à gauche	L1	L2	L3	S 1)	P 1)
DOLLE (0V/000 D44V/IIO	D0044 474 00	Com de mass mide	219	114,5	203	0".0	1 1/4" H
PGH5-	3X/063R11VU2	R901147129	Sur demande	[8.62]	[4.51]	[7.99]	2" S	
DOUE 2	0V/000 D44V/II0	D001147100	C do moo m do	227	118,5	211	2" S	1 1/4" H
PGH5-	3X/080R11VU2	R901147130	Sur demande	[8.94]	[4.67]	[8.31]		
PGH5-3>	5-3X/100R11VU2	D001147101	Cur domonado	236	123	220	2 1/2" S	1 1/2" H
		R901147131	Sur demande	[9.29]	[4.84]	[8.66]		
DCHE (3X/125R11VU2	D001147100	Sur demande	248	129	232	2 1/2" S	1 1/2" H
РСПЭ-С	3A/125H11VU2	R901147132	Sur demande	[9.76]	[5.08]	[9.13]		
DCHE (3X/160R11VU2	R901147133	Sur demande	266	138	250	3" S	0".1.1
Рипо-с	3A/10UH11VU2	H90114/133	Sur demande	[10.47]	[5.43]	[9.84]	3 3	2" H
DOLLE (0V/000 D07VII0	D0044.474.04	0	284	147	268	0.4/0".0	0".0
PGH5-0	3X/200R07VU2	R901147134	Sur demande	[11.18]	[5.79]	[10.55]	3 1/2" S	2" S
DOLLE (0V/050 D07V/I0	D00114710F	Cur domonado	308	159	292	0.4/0".0	2 1/2" S
PGH5-3	3X/250R07VU2	R901147135	Sur demande	[12.13]	[6.26]	[11.50]	3 1/2" S	

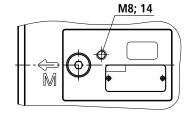



S = Série de pression standard;
 H = Série de haute pression;
 cotes précises: Voir tableau, page 12

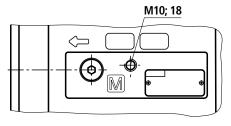
Une pompe tournant à droite est représentée; sur les pompes tournant à gauche, la prise de pression est située sur l'autre coté!

²⁾ A partir d'ici commence la partie combinée pour les combinaisons de pompe


Raccords (cotes en mm [inch])

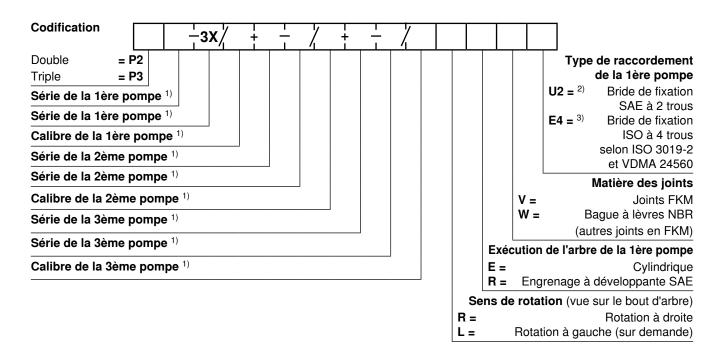


BG	CN	Gabarit des trous/ prise d'aspiration S	D1	D2	S1	S2	Gabarit des trous/ prise de pression P	D3	D4	P1	P2
	020	1" 5000 PSI	Ø25 [Ø0.984]	M10; 18	52,4 [2.063]	26,2 [1.032]	3/4" 6000 PSI	Ø19 <i>[Ø0.748]</i>	M10; 18	50,8 [2.000]	23,8 [0.937]
	025	1 1/4" 4000 PSI	Ø32 [Ø1.260]	M10; 18	58,7 [2.311]	30,2 [1.189]	3/4" 6000 PSI	Ø19 <i>[Ø0.748]</i>	M10; 18	50,8 [2.000]	23,8 [0.937]
4	032	1 1/2" 3000 PSI	Ø38 [Ø1.496]	M12; 21	69,9 <i>[2.752]</i>	35,7 [1.406]	1" 6000 PSI	Ø25,4 [Ø1.000]	M12; 23	57,2 [2.252]	27,8 [1.094]
	040	1 1/2" 3000 PSI	Ø38 [Ø1.496]	M12; 21	69,9 <i>[2.752]</i>	35,7 [1.406]	1" 6000 PSI	Ø25,4 [Ø1.000]	M12; 23	57,2 [2.252]	27,8 [1.094]
	050	2" 3000 PSI	Ø51 [Ø2.008]	M12; 21	77,8 [3.063]	42,9 [1.689]	1" 6000 PSI	Ø25,4 [Ø1.000]	M12; 23	57,2 [2.252]	27,8 [1.094]
	063	2" 3000 PSI	Ø51 [Ø2.008]	M12; 21	77,8 [3.063]	42,9 [1.689]	1 1/4" 6000 PSI	Ø32 [Ø1.260]	M12; 21	66,6 [2.622]	31,8 <i>[1.252]</i>
	080	2" 3000 PSI	Ø51 [Ø2.008]	M12; 21	77,8 [3.063]	42,9 [1.689]	1 1/4" 6000 PSI	Ø32 [Ø1.260]	M12; 21	66,6 [2.622]	31,8 <i>[1.252]</i>
	100	2 1/2" 2500 PSI	Ø64 [2.520]	M12; 23	88,9 <i>[3.500]</i>	50,8 [2.000]	1 1/2" 6000 PSI	Ø38 [Ø1.496]	M16; 30	79,3 [3.122]	36,5 [1.437]
5	125	2 1/2" 2500 PSI	Ø64 [2.520]	M12; 23	88,9 [3.500]	50,8 [2.000]	1 1/2" 6000 PSI	Ø38 [Ø1.496]	M16; 30	79,3 [3.122]	36,5 [1.437]
	160	3" 2000 PSI	Ø76 [Ø2.992]	M16; 30	106,4 [4.189]	61,9 <i>[2.437]</i>	2" 6000 PSI	Ø51 [Ø2.008]	M20; 35	96,8 [3.811]	44,5 [1.752]
	200	3 1/2" 500 PSI	Ø89 [Ø3.504]	M16; 30	120,7 <i>[4.752]</i>	69,9 [2.752]	2" 3000 PSI	Ø51 [Ø2.008]	M12; 23	77,8 [3.063]	42,9 [1.689]
	250	3 1/2" 500 PSI	Ø89 [Ø3.504]	M16; 30	120,7 <i>[4.752]</i>	69,9 [2.752]	2 1/2" 2500 PSI	Ø64 [Ø2.520]	M12; 23	88,9 <i>[3.500]</i>	50,8 [2.000]


Raccord de mesure PGH4-3X/... et PGH5-3X/...

Filet de transport PGH4-3X/...

Filet de transport PGH5-3X/...



Combinaisons de pompes

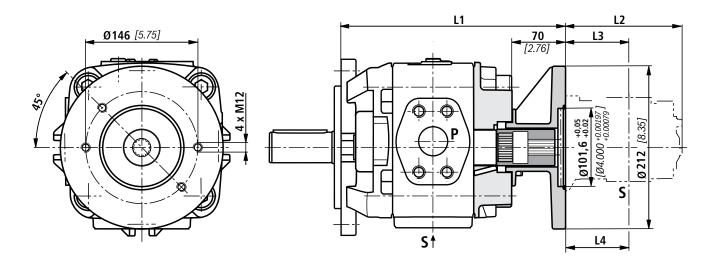
Toutes les pompes à engrenages intérieurs de type PGH-3X peuvent être combinées, chaque pompe possédant un engrenage sur l'arbre d'entraînement. Les combinaisons possibles et les références d'article des pièces à combiner nécessaires figurent dans le tableau suivant.

Veuillez respecter les directives d'étude relatives aux combinaisons de pompes figurant à la page 21.

	Pompe avant	Réf. a	article
Pompe arrière		PGH4-3X	PGH5-3X
PGH2-2X/RU2	(RF10223)	R901155288	R901155283
PGH3-2X/RU2	(RF10223)	R901155288	R901155283
PGH4-3X/RU2		R901155289	R901155284
PGH5-3X/RU2		-	R901155285
PGF2-2X/JU2	(RF10213)	R901155288	R901155283
PGP2-2X/JU2	(RF10231)	R901155288	R901155283
PGF3-3X/JU2	(RF10213)	R901155287	R901155282
PGP3-3X/JU2	(RF10231)	R901155287	R901155282
PVV/Q1-1X/JB	(RF10335)	R901155287	R901155282
PVV/Q2-1X/JB	(RF10335)	R901155287	R901155282
PVV/Q4-1X/JC	(RF10335)	-	R901155286
PVV/Q5-1X/JC	(RF10335)	-	R901155286
AZPF-1X/RRB	(RF10089)	R901155288	R901155283

1) Détails: Voir la codification, page 2

2) Avec arbre cylindrique et denté

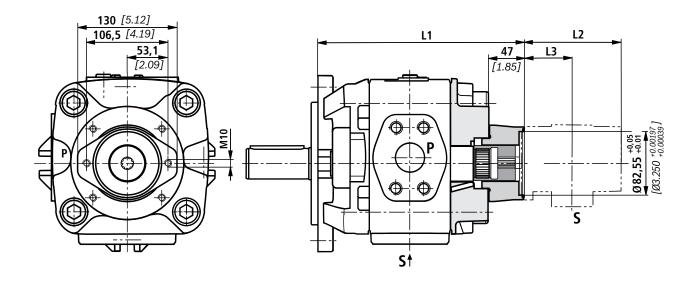

Exemple de commande:

P3GH5-3X/160+GH5-3X/100+GH4-3X/050REVE4

³⁾ Uniquement en combinaison avec un arbre cylindrique (selon VDMA), uniquement rotation à droite

Les dessins cotés montrent la pompe avant et la partie combinée.

Partie combinée PGH5-3X+GF3-3X/VV1-1X/VV2-1X/K02


PGH5-3X Calibre	PGH5-3X/REU2 PGH5-3X/REE4 L1	PGH5-3X/RRU2 L1
63	264 [10.39]	273 <i>[10.75]</i>
80	272 [10.71]	281 [11.06]
100	281 [11.06]	290 [11.42]
125	293 [11.54]	302 [11.89]
160	311 [12.24]	320 <i>[12.60]</i>
200	329 <i>[12.95]</i>	338 [13.31]
250	353 <i>[13.90]</i>	362 <i>[14.25]</i>

PGF3/PGP2 Calibre	L2	L3
20	144,5 <i>[5.69]</i>	79,5 <i>[3.13]</i>
22	146,5 <i>[5.77]</i>	80,5 <i>[3.17]</i>
25	150,5 <i>[5.93]</i>	82,5 <i>[3.25]</i>
32	159,5 <i>[6.28]</i>	87 [3.43]
40	169,5 <i>[6.67]</i>	92 [3.62]

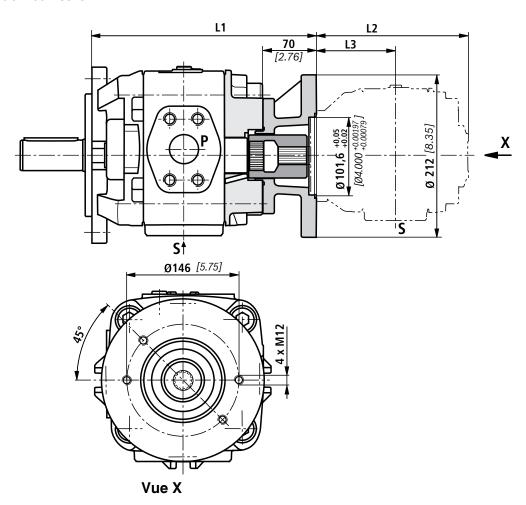
PVVUMB Taille	L2	L3 (P)	L4 (S)
1	156 <i>[6.14]</i>	133 <i>[5.24]</i>	63,5 <i>[2.50]</i>
2	163 <i>[6.42]</i>	38 [1.50]	120,5 <i>[4.75]</i>

Les dessins cotés montrent la pompe avant et la partie combinée.

Partie combinée PGH5-3X+GH2/3-2X/GF2-2X/AZPF-1X/K01

PGH5-3X Calibre	PGH5-3X/REU2 PGH5-3X/REE4	PGH5-3X/RRU2
	L1	L1
63	241 <i>[9.49]</i>	250 <i>[9.84]</i>
80	249 [9.80]	258 <i>[10.16]</i>
100	258 [10.16]	267 [10.51]
125	270 [10.63]	279 [10.98]
160	288 [11.34]	297 [11.69]
200	306 <i>[12.05]</i>	315 <i>[12.40]</i>
250	330 [12.99]	339 <i>[13.35]</i>

PGH2		
Calibre	L2	L3
005	110 <i>[4.33]</i>	54 [2.13]
006	112,5 <i>[4.43]</i>	55,5 <i>[2.19]</i>
008	116 <i>[4.57]</i>	57 [2.24]

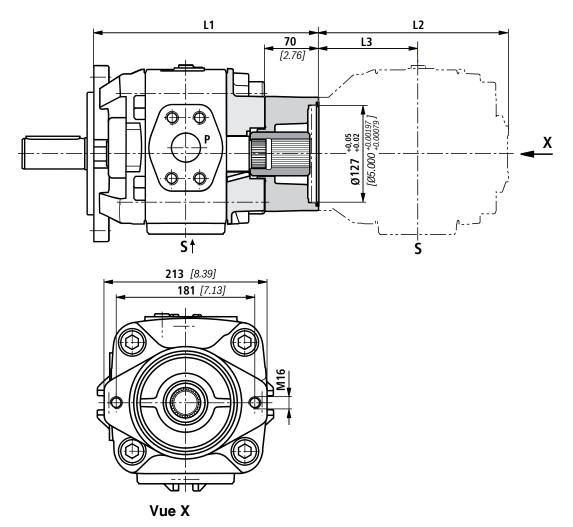

PGH3		
Calibre	L2	L3
011	121,5 <i>[4.78]</i>	60 <i>[2.36]</i>
013	126,5 <i>[4.98]</i>	62,5 <i>[2.46]</i>
016	131,5 <i>[5.18]</i>	65 <i>[2.56]</i>

PGF2/PGP2		
Calibre	L2	L3
006	116 <i>[4.567]</i>	65 <i>[2.559]</i>
800	119,5 <i>[4.705]</i>	67 <i>[2.638]</i>
011	125 [4.921]	69,5 <i>[2.736]</i>
013	130 [5.118]	72 [2.835]
016	135 <i>[5.315]</i>	74,5 [2.933]
019	141 <i>[5.551]</i>	77,5 [3.051]
022	147 <i>[5.787]</i>	80,5 <i>[3.169]</i>

AZPF		
Calibre	L2	L3
004	85 <i>[3.346]</i>	40 <i>[1.575]</i>
005	87,5 <i>[3.445]</i>	41 [1.614]
800	91,5 <i>[3.602]</i>	43 [1.692]
011	96,5 <i>[3.799]</i>	47 [1.850]
014	101,5 <i>[3.996]</i>	47,5 [1.870]
016	105 <i>[4.134]</i>	47,5 <i>[1.870]</i>
019	110 [4.331]	47,5 <i>[1.870]</i>
022	115,5 <i>[4.547]</i>	55 <i>[2.165]</i>

Les dessins cotés montrent la pompe avant et la partie combinée.

Partie combinée PGH5-3X+GH4-3X..R

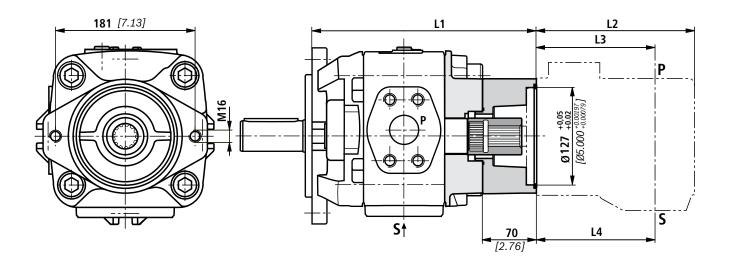


PGH5-3X Calibre	PGH5-3X/REU2 PGH5-3X/REE4 L1	PGH5-3X/RRU2 L1
63	264 [10.39]	273 [10.75]
80	272 [10.71]	281 [11.06]
100	281 [11.06]	290 [11.42]
125	293 [11.54]	302 [11.89]
160	311 <i>[12.24]</i>	320 <i>[12.60]</i>
200	329 <i>[12.95]</i>	338 [13.31]
250	353 <i>[13.90]</i>	362 <i>[14.25]</i>

PGH4-3XRU2 Calibre	L2	L3
20	145 <i>[5,71]</i>	70,5 <i>[2,78]</i>
25	150 <i>[5,91]</i>	73 [2,87]
32	157 <i>[6,18]</i>	76,5 <i>[3,01]</i>
40	164 <i>[6,46]</i>	80 [3,15]
50	174 [6,85]	85 <i>[3,35]</i>

Les dessins cotés montrent la pompe avant et la partie combinée.

Partie combinée PGH5-3X+GH5-3X..R



PGH5-3X Calibre	PGH5-3X/REU2 PGH5-3X/REE4 L1	PGH5-3X/RRU2 L1
	<u>-</u>	L 1
63	264 [10.39]	273 <i>[10.75]</i>
80	272 [10.71]	281 <i>[11.06]</i>
100	281 [11.06]	290 [11.42]
125	293 [11.54]	302 [11.89]
160	311 [12.24]	320 <i>[12.60]</i>
200	329 <i>[12.95]</i>	338 [13.31]
250	353 [13.90]	362 <i>[14.25]</i>

PGH5-3XRU2 Calibre	L2	L3
63	219 <i>[8.62]</i>	114.5 <i>[4.51]</i>
80	227 [8.94]	118.5 <i>[4.67]</i>
100	236 [9.29]	123 [4.84]
125	248 [9.76]	129 [5.08]
160	266 [10.47]	138 <i>[5.43]</i>
200	284 [11.18]	147 <i>[5.79]</i>
250	308 [12.13]	159 <i>[6.26]</i>

Les dessins cotés montrent la pompe avant et la partie combinée.

Partie combinée: PGH5-3X+VV4/5-1X..J

PGH5-3X Calibre	PGH5-3X/REU2 PGH5-3X/REE4 L1	PGH5-3X/RRU2 L1
63	264 [10.39]	273 [10.75]
80	272 [10.71]	281 [11.06]
100	281 [11.06]	290 [11.42]
125	293 [11.54]	302 [11.89]
160	311 [12.24]	320 <i>[12.60]</i>
200	329 <i>[12.95]</i>	338 [13.31]
250	353 <i>[13.90]</i>	362 <i>[14.25]</i>

PVVUMB Taille	L2	L3 (P)	L4 (S)
4	186 <i>[7.32]</i>	38 [1.50]	126 <i>[4.96]</i>
5	216 <i>[8.50]</i>	43 [1.69]	153 <i>[6.02]</i>

1. Consignes générales

Les présentes directives d'étude se réfèrent aux caractéristiques spécifiques de la pompe à engrenages intérieurs PGH.-3X.

Vous trouverez des consignes et des conseils généraux exhaustifs dans le manuel Hydraulik Trainer, volume 3 "Directives d'étude et construction d'installations hydrauliques" RF 00281.

1.1 Utilisation conforme

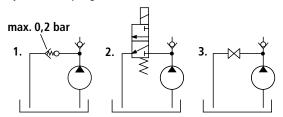
Les pompes à engrenage intérieur Rexroth sont destinées à la construction de systèmes d'entraînement hydrauliques dans la construction de machines-outils. Dans le cadre de l'étude, les principes de la directive Machines de l'UE ou, en dehors de l'UE, les règles nationales comparables doivent être respectés. L'utilisation dans les zones potentiellement explosibles selon la directive 94/9/CE (ATEX) est interdite.

1.2 Caractéristiques techniques

Le constructeur de machines ou d'installations doit assurer le respect des caractéristiques techniques et des conditions de service autorisées. La pompe elle-même n'est pas munie d'un dispositif qui évite l'exploitation en dehors des conditions autorisées.

Toutes les caractéristiques techniques de performance mentionnées sont des valeurs moyennes et s'appliquent si les conditions cadres indiquées sont assurées. Les caractéristiques techniques peuvent changer en cas d'un changement des conditions cadres (p.ex. viscosité). Des tolérances en conformité avec l'état respectif de la technique sont possibles.

L'exploitation de la pompe en dehors des caractéristiques techniques admissibles (pages 4 et 5) est possible dans un certain cadre, mais elle nécessite l'autorisation expresse écrite de Bosch Rexroth.


2. Etude hydraulique

2.1 Possibilité de purge pour la mise en service

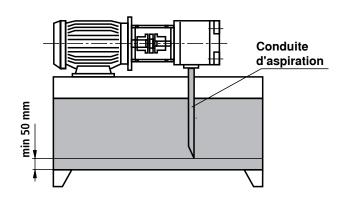
Pour les pompes à engrenage intérieure Rexroth PGH.-3X, une possibilité de purge manuelle, commutable ou automatique doit être prévue pour la mise en service ou la remise en service après l'exécution de travaux d'entretien et de réparation. En tant qu'orifice de purge, le raccord de mesure (M) qui se trouve sur la pompe, peut être utilisé. Sinon, l'orifice de purge doit être prévu sur la conduite de pression devant la première soupape ou le clapet anti-retour. La purge doit être effectuée à une contre-pression maximale de 0,2 bars.

Exemples de systèmes de purge:

- 1. Purge automatique via une soupape de purge automatique
- 2. Système de purge avec interrupteur
- 3. Système de purge à commande manuelle

2.2 Conduite d'aspiration

Les sections des conduites doivent être adaptées aux débits prévus de sorte que, en moyenne, une vitesse d'aspiration optimale de 0,6 à 1,2 m/s est atteinte. La vitesse d'aspiration ne doit pas dépasser une valeur maximale de 2 m/s.


Les sections des conduites d'aspiration sur la pompe elle-même sont dimensionnées pour le débit maximal et ne constituent donc qu'un point de repère. En cas de fonctionnement continu à des vitesses inférieures à la vitesse maximale admissible, le diamètre de la conduite d'aspiration en fonction de la vitesse d'aspiration effective doit également être dimensionné de sorte qu'il soit inférieur à celui du raccord d'aspiration de la pompe.

Dans l'ensemble, la conduite d'aspiration doit être conçue de sorte que la pression de service admissible à l'entrée est respectée (de 0,8 à 2 bars abs.)! Il faut éviter l'utilisation de coudes et la connexion des conduites d'aspiration de plusieurs pompes. Au cas où il serait indispensable de se servir de filtres à aspiration, il faut assurer que la pression de service minimale à l'entrée de l'installation est assurée même lorsque le filtre est encrassé.

Il faut veiller à ce que les raccords soient étanches à l'air et à ce que la stabilité de forme des flexibles d'aspiration vis-à-vis de la pression d'air extérieure soit assurée.

La profondeur d'immersion de la conduite d'aspiration doit être la plus grande possible. En fonction de la pression à l'intérieur du réservoir, de la viscosité du fluide de service et des conditions de flux dans le réservoir, des tourbillons ne doivent pas se former même en cas de débit maximal. Sinon, il existe un risque d'aspiration d'air.

Nous recommandons le choix de conduites d'aspiration selon AB 23-03.

2.3 Conduite de pression

En ce qui concerne les conduites de pression, il faut veiller à une sécurité de rupture suffisante des conduites, flexibles et éléments de connexion. Les sections doivent être déterminées en fonction du débit maximal afin d'éviter une sollicitation excessive supplémentaire de la pompe suite à une pression de retenue. Dans ce cadre, il faut également considérer les pertes dans les tuyaux sur toute la longueur de la conduite de pression ainsi que d'autres facteurs de résistance (coudes, filtre sous pression).

2.4 Limitation de la pression

La pompe à engrenages intérieurs PGH ne comporte pas de dispositif qui assure le respect de la pression de service maximale. Le réglage et le respect de la pression de service admissible doivent être assurés sur l'installation.

Les limiteurs de pression nécessaires à cet effet doivent être dimensionnés en tenant compte du débit maximal et de la vitesse d'augmentation de la pression de sorte que la pression de service intermittente admissible n'est pas dépassée.

2.5 Mode de maintien de la pression

En cas d'entraînement à vitesse variable, la pompe peut également être exploitée temporairement en mode de maintien de la pression en dessous de la vitesse minimale indiquée. La durée de maintien et la vitesse nécessaire à cet effet résultent de la viscosité de service et du niveau de pression. En ce qui concerne le dimensionnement, merci de contacter le service technique de Bosch Rexroth.

En arrêt (vitesse = 0), un débit de fuite recule dans le réservoir via la pompe en fonction de la pression de charge. Pour éviter cet effet d'une manière sûre, l'utilisation d'un clapet anti-retour est indispensable.

En cas d'utilisation d'un clapet anti-retour, merci de considérer les consignes relatives à la purge du chapitre 2.1.

3. Etude mécanique

3.1 Possibilité d'installation et de désinstallation

Pour permettre l'installation et la désinstallation de la pompe sur l'entraînement, l'accès à l'installation doit être assuré à l'aide de matériel de levage adéquat. Merci de considérer surtout les dimensions propres de la taille PGH5 (voir "Caractéristiques techniques", page 5).

Pour la fixation, il faut prévoir des vis de la classe de résistance 8.8 ou 10.9.

3.2 Fixation

Sur la machine, les vis doivent être accessibles de sorte que le couple de serrage exigé peut être assuré. Le couple de serrage des vis s'oriente sur les conditions de service, ainsi que sur les éléments concernés de la connexion vissée et doit être déterminé par le fabricant lors de la conception du groupe, de la machine ou de l'installation.

3.3 Récipient

En ce qui concerne la construction du récipient ou la sélection de récipients standard adéquats, il faut tenir compte des exigences suivantes:

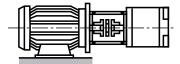
- Choix du volume de récipient le plus grand possible en fonction du débit continu ou moyen afin de permettre l'élimination de bulles d'air par une durée de séjour suffisante du fluide dans le récipient. Dans ce contexte, la capacité de séparation d'air du fluide utilisé joue également un rôle.
- Prévoir des zones de séjour tranquilles pour le fluide dans le réservoir, afin de permettre la séparation d'air.
- Prévoir des tôles de guidage afin de permettre la sédimentation de salissures au fond du récipient en dehors de la zone d'aspiration de la pompe.
- Dimensionnement large des surfaces du réservoir en fonction de la puissance calorifique à éliminer via les parois du réservoir.

3.4 Fonctions nécessaires du groupe

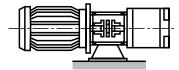
Les groupes hydrauliques doivent disposer au moins des caractéristiques suivantes:

- Afin d'assurer la compensation de la pression, les récipients dont – selon leur conception – la pression intérieure correspond à la pression ambiante, doivent être équipés de filtres de ventilation.
- Le remplissage de fluide ne doit être effectué qu'à l'aide d'un manchon de remplissage qui évite le remplissage par du fluide non filtré.
- La pénétration de salissures ou d'humidité doit être évitée. En cas d'utilisation dans un environnement fortement pollué, le réservoir doit être prétendu à cet effet à l'aide d'air comprimé. Si un nettoyage de la surface extérieure du réservoir est prévu ou à attendre pendant la durée d'exploitation, il faut choisir des raccords pour les tuyaux, les conduites ou les flexibles qui assurent une étanchéité fiable en cas de traitement au jet d'eau.

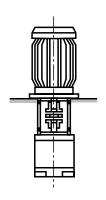
3.5 Emplacement et conditions ambiantes

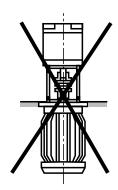

En ce qui concerne les emplacement à partir d'une hauteur géodésique supérieure à 1000 m, la pompe doit être installée dans ou sous le réservoir ou bien le réservoir doit être prétendu à l'aide d'air comprimé pour assurer le respect de la pression d'entrée minimale admissible. La conduite d'aspiration doit être brève et sa section doit être grande; il est déconseillé d'utiliser des coudes.

En cas d'installation de la pompe à plus de 10 mètres en dessous du récipient, la réduction de la pression d'entrée doit être assurée par des mesures supplémentaires pour garantir le respect de la valeur maximale admissible.


En cas d'exploitation de la pompe dans un environnement salin ou corrosif ou en cas d'un traitement éventuel aux agents fortement abrasifs, il faut assurer que la bague à lèvres et la zone d'étanchement de l'arbre de l'installation n'entrent pas en contact direct avec l'environnement.

3.6 Positions de montage


IM_{B3}


IM_{B5}

IM V1

IM V2

▲ Attention!

La position de montage moteur en bas et pompe en haut (p.ex. IM V2) n'est pas admissible!

4. Combinaisons de pompes

- En cas de combinaisons de pompes, il faut veiller à ce que, dans chaque étage, les données de service admissibles sur le type de pompe respectif soient respectées.
- Toutes les pompes combinées doivent avoir le même sens de rotation.
- La pompe au couple de rotation le plus élevé, des pompes à cylindrée variable ou des pompes à sollicitation intermittente doivent être prévus en tant que premier étage de la combinaison de pompes.
- Le couple de convoyage maximal doit être vérifié par le chef de projet pour chaque application. La même règle est applicable aux combinaisons de pompes déjà existantes (codifiées).

 Le couple d'entraînement d'un étage de pompe est calculé de la façon suivante:

$$T = \frac{\Delta p \cdot V \cdot 0.0159}{\eta_{\text{hvdr.-méc.}}}$$

T: Couple en Nm

 Δp : Pression de service en bars

V: Volume de refoulement en cm³

η: Rendement hydromécanique

Couples max. autorisés en Nm:

Туре	Couple d'er	Couple de sortie	
	Arbre cylindriqueE	Arbre dentéR	
PGH4	450	450	280
PGH5	1100	1400	700

- La somme des couples d'une combinaison de pompes ne doit pas excéder le couple d'entraînement max.
- Une aspiration commune n'est pas possible.
- Pour améliorer la résistance et la stabilité, nous conseillons pour les montages combinés de trois ou plusieurs pompes la bride de fixation ISO à 4 trous selon la norme VDMA "E4".
- Avant la mise en service de combinaisons de pompes fonctionnant avec de différents fluides, prenez contact avec Bosch Rexroth.
- Les pompes médianes et arrières doivent avoir un arbre en exécution "R" (denté).

5. Plan d'entretien et sécurité de fonctionnement

Afin d'assurer un fonctionnement sûr et une longue durée de vie de la pompe, un plan d'entretien doit être élaboré pour le groupe, la machine ou l'installation. Le plan d'entretien doit assurer que les conditions de fonctionnement prévues ou admissibles de la pompe sont respectées pendant la durée d'exploitation.

Il faut notamment assurer le respect des paramètres de service suivants:

- La pureté requise de l'huile
- La plage de température de service
- Le niveau de remplissage du fluide de service

En plus, il faut contrôler régulièrement si les paramètres suivants de la pompe et de l'installation ont changé:

- Vibrations
- Bruit
- Température différentielle pompe fluide dans le récipient
- Formation de mousse dans le récipient
- Étanchéité

Tout changement de ces paramètres est un indicateur d'usure de composants (p. ex. moteur d'entraînement, accouplement, pompe etc.). Il faut immédiatement détecter et éliminer la cause.

Pour garantir une sécurité de fonctionnement élevée de la pompe dans la machine ou dans l'installation, nous recommandons le contrôle automatique continu des paramètres susmentionnés et la désactivation automatique en cas de changements qui dépassent l'importance des variations habituelles dans la plage de service prévue.

Les composants en plastique des accouplements d'entraînement doivent être remplacés régulièrement mais au minimum tous les 5 ans. Les indications respectives du fabricant doivent être observées prioritairement.

Dans le cadre de la maintenance préventive de la pompe, nous recommandons de faire remplacer les joints d'étanchéité après une durée de service maximale de 5 ans par un service de maintenance agrée par Bosch Rexroth.

6. Accessoires

6.1 Brides de raccordement SAE

Nous recommandons le choix des brides SAE pour la prise d'aspiration et de pression selon AB 22-15 (avec raccord soudé) ou AB 22-13 (avec raccord fileté).

6.2 Bloc de protection de pompe

Pour la limitation de la pression de service et pour assurer la circulation sans pression dans la pompe, nous recommandons nos blocs de protection de pompe du type DBA... selon RF 25890.

Toutefois, une ventilation automatique lors de la mise en service via les blocs DBA n'est pas possible. A cet effet, nous vous recommandons une ventilation manuelle au automatique séparée, p. ex. via le raccord de mesure de la pompe (voir page 19)!

6.3 Autres accessoires

Pour le montage de la pompe à engrenages intérieurs Rexroth PGH.-3X sur des moteurs électriques, nous recommandons le choix des supports de pompe selon AB 41-20 et le choix d'accouplements à torsion élastique selon AB 33-22.

Directives de mise en service

Préparatifs

- Vérifier si l'équipement est installé de façon correcte et propre.
- Remplir le fluide hydraulique uniquement via un filtre et utiliser un fluide ayant le coefficient de rétention minimal requis.
- Remplir entièrement la pompe de fluide hydraulique par le tuyau d'aspiration ou de pression.
- Vérifier si le sens de rotation du moteur correspond au sens de rotation conforme au type de pompe.

Purge d'air

- Ouvrir manuellement les prises de purge d'air de l'installation ou mettre sur le cycle sans pression, selon le manuel d'utilisation. Durant la purge, l'air enfermé doit pouvoir être évacué sans pression.
- Pour purger la pompe, mettre le moteur en marche et l'arrêter immédiatement (impulsion). Cette opération est à répéter jusqu'à ce que la pompe soit totalement purgée.
- Refermer manuellement les prises de purge qui ont été ouvertes.

Mise en service

- Lorsque la pompe est entièrement purgée, mettre le moteur en marche. Faire marcher la pompe sans pression jusqu'à la purge totale de l'installation. Pour la purge de l'installation, tenir compte du manuel de service de l'installation.
- Mettre en service l'installation conformément au manuel de service et faire fonctionner la pompe.
- Après un certain temps de marche, vérifier si le fluide hydraulique dans le réservoir produit des bulles ou de la mousse à la surface.

Fonctionnement

- Pendant le fonctionnement, vérifier s'il y a un changement éventuel de bruit. Une légère montée du bruit due à l'échauffement du fluide est normale. Une forte augmentation du bruit ou un bref changement stochastique du bruit peut être dû à une aspiration d'air. L'air peut aussi être aspiré en raison d'un tourbillon, si le tuyau d'aspiration est trop court ou si le niveau du fluide est trop faible.
- Des changements intervenant dans les vitesses de service, les températures, une montée du bruit ou de la consommation de puissance peut indiquer une usure ou une détérioration de l'installation ou de la pompe.

Remise en service

- Vérifier l'étanchéité de la pompe et de l'installation. Les fuites indiquent qu'il y a une zone inétanche au-dessous du niveau du fluide hydraulique. Une augmentation du niveau de fluide hydraulique à l'intérieur du réservoir indique que celui-ci n'est pas étanche au-dessus du niveau du fluide.
- Si la pompe est installée au-dessus du niveau du fluide hydraulique, la pompe peut marcher à vide s'il y a une zone inétanche, par ex., une bague à lèvres usée. Dans ce cas, il faut purger de nouveau pour la remise en service. Procéder à la réparation.
- Refaire une purge après les travaux de réparation ou d'entretien.
- Si l'installation est intacte, mettre le moteur en marche.

Généralités

- Le fonctionnement et la puissance des pompes que nous fournissons ont été contrôlés. Il est interdit d'effectuer des modifications sur la pompe car ceci provoquerait l'annulation de tous les droits de garantie!
- Les réparations doivent uniquement être effectuées chez le fabricant ou ses concessionnaires et succursales agréés.
 Le fabricant décline toute garantie en cas de réparation effectuée soi-même.

⚠ Conseils importants

- Le montage, la maintenance et l'entretien de la pompe doivent uniquement être effectués par les personnes autorisées et formées à cet effet!
- La pompe doit uniquement être exploitée avec les caractéristiques autorisées (voir pages 4 et 5)!
- La pompe doit uniquement être utilisée si elle est en parfait état!
- Avant d'effectuer des travaux sur la pompe, elle doit être mise hors pression!
- Toute transformation et modification arbitraire susceptible d'altérer la sécurité et le bon fonctionnement est interdite!
- Installer des dispositifs de protection (par ex. protection d'accouplement) ou ne pas enlever les dispositifs de protection existants!
- Vérifier le serrage correct de toutes les vis de fixation! (respecter le couple de serrage prescrit)
- Respecter impérativement les prescriptions de sécurité et de prévention des accidents!

© Tous droits réservés par Bosch Rexroth AG, y compris en cas de dépôt d'une demande de droit de propriété industrielle. Tout pouvoir de disposition, tel que droit de reproduction et de transfert, détenu par Bosch Rexroth.

Les indications données servent exclusivement à la description du produit. Il ne peut être déduit de nos indications aucune déclaration quant aux propriétés précises ou à l'adéquation du produit en vue d'une application précise. Ces indications ne dispensent pas l'utilisateur d'une appréciation et d'une vérification personnelle. Il convient de tenir compte du fait que nos produits sont soumis à un processus naturel d'usure et de vieillissement.